This article was downloaded by:[Monash University] On: 18 June 2008
Access Details: [subscription number 778575838]
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

	Phosphorus, Sulfur, and Silicon and the Related Elements Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290
PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS	
EDITOR-IN-CHIEF: ROBERT R MOINES EUROPEAN EITOR KONSIANTIMMARACHOSOF:	Studies on Organophosphorus Compounds: The Synthesis of [1,3,2]-Diazaphospholes and [1,3,2]-Oxaazaphospholes O. A. Omran ${ }^{\text {a }}$ H. M. Moustafa ${ }^{\text {a }}$ ${ }^{\text {a }}$ Chemistry Department, Sohag, Egypt Online Publication Date: 01 November 2006
Elements, 181:11, 2519-2528	To cite this Article: Omran, O. A. and Moustafa, H. M. (2006) 'Studies on Organophosphorus Compounds: The Synthesis of [1,3,2]-Diazaphospholes and [1,3,2]-Oxaazaphospholes', Phosphorus, Sulfur, and Silicon and the Related

To link to this article: DOI: 10.1080/10426500600754794
URL: http://dx.doi.org/10.1080/10426500600754794

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: $\underline{h t t p: / / w w w . i n f o r m a w o r l d . c o m / t e r m s-a n d-c o n d i t i o n s-o f-a c c e s s . p d f ~}$
This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Studies on Organophosphorus Compounds: The Synthesis of [1,3,2]-Diazaphospholes and [1,3,2]-Oxaazaphospholes

O. A. Omran
H. M. Moustafa
Chemistry Department, Sohag, Egypt
A number of spiro[cyclopentane (cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole] derivatives (3a-c, 5a-c, 11a-c, and 12a-c) and spiro-[cyclopentane (cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]oxaazaphos-phole] derivatives ($\mathbf{7 a - c}$) were prepared via an interaction of 2,4-bis-(4-methoxy-phenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (1) with substances containing two functional groups.

Keywords 1-Phenylamino-1-cyanocycloalkanes; 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide

INTRODUCTION

It is well known that 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphos-phetane-2,4-disulphide (Lawesson's Reagent, [LR]) is a most effective and versatile thiation reagent for different cabonyl compounds. ${ }^{1-5}$ The nucleophiles attack LR at the phosphorus atom and form phosphorus heterocycles. ${ }^{6-9}$ In view of the latest development and also in continuation of our study of phosphorus hetero-cycles, ${ }^{10-13}$ In this article it was of interest to synthesize spiro[1,3,2]diazaphospholes and spiro[1,3,2]oxaazaphospholes from the reaction of LR with other classes of substrates with two functional groups.

RESULTS AND DISCUSSION

The reaction of 1-phenylamino-1-cyanocyclopentane(cyclohexane, and cyclo-heptane $)^{14}(\mathbf{2 a - c})$ with LR (1) in boiling acetonitrile afforded 2^{\prime}-(4-methoxy-phenyl)-4'-phenylspiro[cyclopentane (cyclohexane, and

[^0]cycloheptane)-1,4'-perhy-dro[1,3,2]diazaphosphole]-2',5'-disulfides ($\mathbf{3 a}-\mathbf{c}$). The reaction pathway was assumed to proceed via a nucleophilic attack of the amino group on the phosphorus of LR followed by a P-SH addition to the nitrile group and subsequent rearrangement, ${ }^{16}$ which yielded compounds 3a-c (cf. Scheme 1). The IR spectra of compounds 3a-c showed the absence of bands corresponding to cyano groups while exhibiting the characteristic absorption band at 651, 642, and $659 \mathrm{~cm}^{-1}$ for $\mathrm{P}=\mathrm{S}$, respectively. ${ }^{1} \mathrm{H}$ NMR spectra of compounds 3a-c exhibited a singlet at 3.9 ppm corresponding to OCH_{3} (cf. Table I).

SCHEME 1

The treatment of compounds 2a-c with sodium metal in ethanol afforded the corresponding amines $4 \mathbf{a}-\mathbf{c}$ in good yield. IR spectra of compounds 4a-c showed the absence of absorption bands corresponding to CN groups and the appearance of new bands corresponding to NH_{2} groups ($3163-3412 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectra of compounds $4 \mathbf{a - c}$ are in agreement with the proposed structure (cf. Table I). Compounds 4a-c were allowed to react with LR (1) in anhydrous benzene at $80^{\circ} \mathrm{C}$ to give 2^{\prime}-(4-methoxyphenyl)-3'-phenylspiro[cyclopentane

M.P. ${ }^{\circ} \mathrm{C}$)				Analytical data Cacd./found				$\operatorname{IR}\left(\mathrm{Cm}^{-1}\right)$	${ }^{1}$ HNMR ∂ (ppm)
no.	solvent	$\begin{gathered} \text { YleId } \\ (\%) \end{gathered}$	(Mol. Wt.)	C	H	N	S		
3a	$\begin{gathered} 160 \\ \text { ethanol } \end{gathered}$	86	$\underset{(388.48)}{\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OPS}_{2}}$	$\begin{aligned} & 58.74 \\ & 58.50 \end{aligned}$	$\begin{aligned} & 5.45 \\ & 5.27 \end{aligned}$	$\begin{aligned} & 7.21 \\ & 7.03 \end{aligned}$	$\begin{aligned} & 16.50 \\ & 16.23 \end{aligned}$	$\begin{aligned} & 3212(\mathrm{NH}), 1246 \\ & (\mathrm{C}-\mathrm{O}), 651(\mathrm{P}=\mathrm{S}) \end{aligned}$	11.2 (br, 1H, NH), 7.8-6.9 (m, 9H, arom.); 3.9 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 1.9-1.4 (m, 8 H , cyclic CH_{2})
3b	$\begin{gathered} 170 \\ \text { ethanol } \end{gathered}$	83	$\underset{(402.51)}{\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OPS}_{2}}$	$\begin{aligned} & 59.68 \\ & 59.30 \end{aligned}$	5.75	$\begin{aligned} & 6.95 \\ & 6.73 \end{aligned}$	$\begin{aligned} & 15.93 \\ & 15.72 \end{aligned}$	$\begin{aligned} & 3266(\mathrm{NH}), 1253 \\ & (\mathrm{C}-\mathrm{O}), 642(\mathrm{P}=\mathrm{S}) \end{aligned}$	$\begin{aligned} & 12.9(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.8-6.7(\mathrm{~m}, 9 \mathrm{H}, \\ & \text { arom.); } 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.9-1.2(\mathrm{~m}, \\ & \left.10 \mathrm{H} \text {, cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
3c	$\begin{gathered} 191 \\ \text { ethanol } \end{gathered}$	79	$\underset{(416.53)}{\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OPS}_{2}}$	$\begin{aligned} & 60.55 \\ & 60.21 \end{aligned}$	$\begin{aligned} & 6.05 \\ & 587 \end{aligned}$	$\begin{aligned} & 6.72 \\ & 6.58 \end{aligned}$	$\begin{aligned} & 15.93 \\ & 15.73 \end{aligned}$	$\begin{aligned} & 3259(\mathrm{NH}), 1239 \\ & (\mathrm{C}-\mathrm{O}), 659(\mathrm{P}=\mathrm{S}) \end{aligned}$	11.9 (br, 1H, NH), 7.8-7.0 (m, 9H, arom.); 3.9 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 1.9-1.2 (m, 12 H , cyclic CH_{2})
4a	Liquid	77	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \\ (190.29) \end{gathered}$	$\begin{aligned} & 75.74 \\ & 75.27 \end{aligned}$	$\begin{aligned} & 9.53 \\ & 9.34 \end{aligned}$	$\begin{aligned} & 14.72 \\ & 14.39 \end{aligned}$	-	$\begin{gathered} 3359,3261,3203 \\ \left(\mathrm{NH}_{2}+\mathrm{NH}\right) \end{gathered}$	11.1 (br, 1H, NH), 7.5-6.9 (m, 5H, arom.); 4.3 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$); 2.8 ($\mathrm{s}, 2 \mathrm{H}$, CH_{2}), $1.9-1.2\left(\mathrm{~m}, 8 \mathrm{H}\right.$, cyclic CH_{2})
4b	Liquid	79	$\begin{gathered} \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \\ (204.31) \end{gathered}$	$\begin{aligned} & 76.42 \\ & 76.01 \end{aligned}$	$\begin{aligned} & 9.86 \\ & 9.61 \end{aligned}$	$\begin{aligned} & 13.71 \\ & 13.49 \end{aligned}$	-	$\begin{gathered} 3412,3336,3230 \\ \left(\mathrm{NH}_{2}+\mathrm{NH}\right) \end{gathered}$	13.0 (br, 1H, NH), 7.5-6.9 (m, 5H, arom.); 4.9 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$); 2.8 ($\mathrm{s}, 2 \mathrm{H}$, CH_{2}), 1.9-1.1 (m, 10 H , cyclic CH_{2})
4c	Liquid	71	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \\ (218.34) \end{gathered}$	$\begin{aligned} & 77.01 \\ & 76.60 \end{aligned}$	$\begin{array}{r} 10.15 \\ 9.97 \end{array}$	$\begin{aligned} & 12.82 \\ & 12.51 \end{aligned}$	-	$\begin{gathered} 3389,3298,3163 \\ \left(\mathrm{NH}_{2}+\mathrm{NH}\right) \end{gathered}$	11.8 (br, 1H, NH), 7.5-6.9 (m, 5H, arom.); 4.4 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$); 2.8 ($\mathrm{s}, 2 \mathrm{H}$, CH_{2}), $1.9-1.0\left(\mathrm{~m}, 12 \mathrm{H}\right.$, cyclic CH_{2})
5a	$\begin{gathered} 216 \\ \text { ethanol } \end{gathered}$	61	$\underset{(358.44)}{\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OPS}}$	$\begin{aligned} & 63.66 \\ & 63.31 \end{aligned}$	$\begin{aligned} & 6.46 \\ & 6.29 \end{aligned}$	$\begin{aligned} & 7.81 \\ & 7.57 \end{aligned}$	$\begin{aligned} & 8.94 \\ & 8.74 \end{aligned}$	3286 (NH), 661 (P=S)	13.0 (br, 1H, NH), 7.5-6.8 (m, 9 H , arom.); 3.9 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.9 ($\mathrm{s}, 2 \mathrm{H}$, CH_{2}), 1.9-1.3 (m, 8 H , cyclic CH_{2})
5b	$\begin{gathered} 233 \\ \text { ethanol } \end{gathered}$	59	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OPS}$ (372.46)	$\begin{aligned} & 64.49 \\ & 64.07 \end{aligned}$	$\begin{aligned} & 6.76 \\ & 6.61 \end{aligned}$	$\begin{aligned} & 7.52 \\ & 7.33 \end{aligned}$	$\begin{aligned} & 8.60 \\ & 8.43 \end{aligned}$	$\begin{gathered} 3299(\mathrm{NH}), 703 \\ (\mathrm{P}=\mathrm{S}) \end{gathered}$	10.6 (br, 1H, NH), 7.5-6.8 (m, 9 H , arom.); 3.9 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.9 (s, 2 H , CH_{2}), 1.9-1.2 (m, 10 H , cyclic CH_{2})
5c	$\begin{gathered} 240 \\ \text { ethanol } \end{gathered}$	68	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OPS} \\ (386.49) \end{gathered}$	$\begin{aligned} & 65.26 \\ & 64.89 \end{aligned}$	$\begin{aligned} & 7.04 \\ & 6.90 \end{aligned}$	$\begin{aligned} & 7.24 \\ & 7.05 \end{aligned}$	$\begin{aligned} & 8.29 \\ & 8.08 \end{aligned}$	3271 (NH), 655 (P=S)	$\begin{aligned} & 10.6(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ; 7.5-6.9(\mathrm{~m}, 9 \mathrm{H}, \\ & \text { arom.), } 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.9(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 1.9-1.1\left(\mathrm{~m}, 12 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \\ & \text { (Continued on next page) } \end{aligned}$

Compound No.	M.P. $\left({ }^{\circ} \mathrm{C}\right)$ Cryst. Solvent	Yield (\%)	Mol. Form. (Mol. Wt.)	Analytical Data Cacd./Found				$\operatorname{IR}\left(\mathrm{Cm}^{-1}\right)$	${ }^{1} \mathrm{HNMRR} \partial$ (ppm)
				C	H	N	S		
$6 \mathbf{}$	Liquid	65	$\begin{gathered} \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO} \\ (191.27) \end{gathered}$	$\begin{aligned} & 75.35 \\ & 74.94 \end{aligned}$	$\begin{aligned} & 8.95 \\ & 8.77 \end{aligned}$	$\begin{aligned} & 7.32 \\ & 7.17 \end{aligned}$	-	$\begin{aligned} & 3412(\mathrm{OH}), 3223 \\ & (\mathrm{NH}) \end{aligned}$	$\begin{gathered} 10.9(\mathrm{br}, \mathrm{H}, \mathrm{NH}) ; 7.4-6.8(\mathrm{~m}, 5 \mathrm{H} \text {, arom.), } \\ 4.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \\ 1.9-1.2\left(\mathrm{~m}, 8 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{gathered}$
$7 \mathbf{}$	163 ethanol	61	$\underset{(389.47)}{\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{PS}}$	$\begin{aligned} & 58.59 \\ & 58.21 \end{aligned}$	$\begin{aligned} & 4.91 \\ & 4.77 \end{aligned}$	$\begin{aligned} & 3.59 \\ & 3.48 \end{aligned}$	$\begin{aligned} & 16.46 \\ & 16.25 \end{aligned}$	$\begin{aligned} & 1244(\mathrm{C}-\mathrm{O}), 661 \\ & (\mathrm{P}=\mathrm{S}) \end{aligned}$	$\begin{aligned} & 7.6-7.0(\mathrm{~m}, 9 \mathrm{H}, \text { arom. }), 4.1(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{OCH}_{2}\right), 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.9-1.3(\mathrm{~m}, \\ & \left.8 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
7b	198 ethanol	59	$\underset{(403.49)}{\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{PS}}$	$\begin{aligned} & 59.53 \\ & 59.17 \end{aligned}$	$\begin{aligned} & 5.49 \\ & 5.27 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 3.38 \end{aligned}$	$\begin{aligned} & 15.89 \\ & 15.69 \end{aligned}$	$\begin{aligned} & 1233(\mathrm{C}-\mathrm{O}, 669 \\ & (\mathrm{P}=\mathrm{S}) \end{aligned}$	$\begin{aligned} & \text { 7.6-7.0 }(\mathrm{m}, 9 \mathrm{H} \text {, arom.), } 4.2(\mathrm{~s}, 2 \mathrm{H} \\ & \left.\mathrm{OCH}_{2}\right), 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.9-1.2(\mathrm{~m} \text {, } \\ & \left.10 \mathrm{H} \text {, cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
7c	$\begin{aligned} & 186 \\ & \text { ethanol } \end{aligned}$	68	$\underset{(417.52)}{\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{PS}}$	$\begin{aligned} & 60.41 \\ & 60.05 \end{aligned}$	$\begin{aligned} & 5.79 \\ & 5.61 \end{aligned}$	$\begin{aligned} & 3.35 \\ & 3.26 \end{aligned}$	$\begin{aligned} & 15.35 \\ & 15.16 \end{aligned}$	$\begin{aligned} & 1249(\mathrm{C}-\mathrm{O}), 655 \\ & (\mathrm{P}=\mathrm{S}) \end{aligned}$	```7.6-7.0 (m, 9H, arom.), 4.2 (s, 2H, OCH2}),3.9(\textrm{s},3\textrm{H},\mp@subsup{\textrm{OCH}}{3}{}),1.9-1.2(m 12 H, cyclic CH2)```
$8 \mathbf{a}$	199 ethanol	65	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O} \\ (309.41) \end{gathered}$	$\begin{aligned} & 73.75 \\ & 73.29 \end{aligned}$	$\begin{aligned} & 7.49 \\ & 7.33 \end{aligned}$	$\begin{aligned} & 13.58 \\ & 13.30 \end{aligned}$	-	$\begin{aligned} & 3276,3209,3148 \\ & (3 \mathrm{NH}), 1649(\mathrm{C}=\mathrm{O}) \end{aligned}$	$11.2,10.8,10.5(\mathrm{br}, 3 \mathrm{H}, 3 \mathrm{NH}), 7.3-6.7$ (m, 10 H , arom.) $3.3\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.9-1.2 (m, 12 H , cyclic CH_{2})
8b	$\begin{gathered} 186 \\ \text { dioxan } \end{gathered}$	60	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O} \\ (323.44) \end{gathered}$	$\begin{aligned} & 74.27 \\ & 73.89 \end{aligned}$	$\begin{aligned} & 7.79 \\ & 7.63 \end{aligned}$	$\begin{aligned} & 12.99 \\ & 12.80 \end{aligned}$	-	$\begin{aligned} & 3295,3200,3147 \\ & (3 \mathrm{NH}), 1644(\mathrm{C}=\mathrm{O}) \end{aligned}$	$\begin{aligned} & 11.9,10.78,10.1(\mathrm{br}, 3 \mathrm{H}, 3 \mathrm{NH}), 7.3-6.7 \\ & \left(\mathrm{~m}, 10 \mathrm{H}, \text { arom.) } 3.3\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)\right. \\ & 1.9-1.1\left(\mathrm{~m}, 10 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
8c	$\begin{gathered} 173 \\ \text { ethanol } \end{gathered}$	67	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O} \\ (337.46) \end{gathered}$	$\begin{aligned} & 74.74 \\ & 74.37 \end{aligned}$	$\begin{aligned} & 8.06 \\ & 7.96 \end{aligned}$	$\begin{aligned} & 12.45 \\ & 12.21 \end{aligned}$	-	$\begin{aligned} & 3293,3222,3129 \\ & \quad(3 \mathrm{NH}), 1650(\mathrm{C}=\mathrm{O}) \end{aligned}$	$12.7,10.8,10.5(\mathrm{br}, 3 \mathrm{H}, 3 \mathrm{NH}), 7.3-6.7$ ($\mathrm{m}, 10 \mathrm{H}$, arom.) 3.3 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.9-1.2\left(\mathrm{~m}, 12 \mathrm{H}\right.$, cyclic CH_{2})
9a	$\begin{gathered} 138 \\ \text { DMF } \end{gathered}$	61	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{~S} \\ (325.47) \end{gathered}$	$\begin{aligned} & 70.11 \\ & 69.75 \end{aligned}$	$\begin{aligned} & 7.12 \\ & 6.93 \end{aligned}$	$\begin{aligned} & 12.91 \\ & 12.71 \end{aligned}$	$\begin{aligned} & 9.85 \\ & 9.69 \end{aligned}$	$\begin{gathered} 3271,3139(2 \mathrm{NH}), \\ 1410(\mathrm{SH}) \end{gathered}$	$12.0,10.3$ (br, 2H, 2 NH), $7.3-6.7$ (m, 8 H, arom.), 4.5 (s, 1H, SH); 3.3 (s, 2H, CH_{2}), 1.9-1.2 (m, 8 H , cyclic CH_{2})
9b	$\begin{gathered} 132 \\ \text { ethanol } \end{gathered}$	59	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~S} \\ (339.50) \end{gathered}$	$\begin{aligned} & 70.75 \\ & 70.44 \end{aligned}$	$\begin{aligned} & 7.42 \\ & 7.24 \end{aligned}$	$\begin{aligned} & 12.37 \\ & 12.18 \end{aligned}$	$\begin{aligned} & 9.44 \\ & 9.29 \end{aligned}$	$\begin{gathered} 3175,3112 \text { (2 NH), } \\ 1432 \text { (SH) } \end{gathered}$	$12.9,11.7$ (br, 2H, 2 NH), $7.3-6.7$ (m, 8 H , arom.), 4.5 (s, 1H, SH); 3.3 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.9-1.2\left(\mathrm{~m}, 10 \mathrm{H}\right.$, cyclic $\left.\mathrm{CH}_{2}\right)$

9c	141 ethanol	68	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S} \\ (353.52) \end{gathered}$	$\begin{aligned} & 71.34 \\ & 71.01 \end{aligned}$	$\begin{aligned} & 7.69 \\ & 7.52 \end{aligned}$	$\begin{aligned} & 11.88 \\ & 11.71 \end{aligned}$	$\begin{aligned} & 9.06 \\ & 8.89 \end{aligned}$	$\begin{aligned} & 3307,3169(2 \mathrm{NH}), \\ & 1427 \text { (SH) } \end{aligned}$	$\begin{gathered} \text { 11.1, } 9.9(\mathrm{br}, 2 \mathrm{H}, 2 \mathrm{NH}), 7.3-6.7(\mathrm{~m}, 8 \mathrm{H}, \\ \text { arom.), 4.3(s, 1H, SH); 3.3(s, 2H, } \\ \left.\mathrm{CH}_{2}\right), 1.9-1.2\left(\mathrm{~m}, 12 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{gathered}$
10a	$\begin{gathered} 203 \\ \text { ethanol } \end{gathered}$	65	$\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \\ (291.41) \end{gathered}$	$\begin{aligned} & 78.31 \\ & 77.94 \end{aligned}$	$\begin{aligned} & 7.26 \\ & 7.09 \end{aligned}$	$\begin{aligned} & 14.42 \\ & 14.23 \end{aligned}$	-	$\begin{aligned} & 3209 \text { (NH), } 1621 \\ & (\mathrm{C}=\mathrm{N}) \end{aligned}$	```9.7 (br, 1H, NH), 7.5-7.0 (m, 10H, arom.), 3.4 (s, 2H, CH2), 1.9-1.2 (m, 8 H, cyclic CH2)```
10 b	211 dioxan	79	$\begin{gathered} \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \\ (305.44) \end{gathered}$	$\begin{aligned} & 78.65 \\ & 78.26 \end{aligned}$	$\begin{aligned} & 7.59 \\ & 7.41 \end{aligned}$	$\begin{aligned} & 13.76 \\ & 13.56 \end{aligned}$	-	$\begin{aligned} & 3267(\mathrm{NH}), 1617 \\ & (\mathrm{C}=\mathrm{N}) \end{aligned}$	```11.1(br, 1H, NH), 7.5-7.0 (m,10H, arom.), 3.4 (s, 2H, CH2), 1.9-1.2 (m, 10 H, cyclic CH2)```
10c	$\begin{gathered} 216 \\ \text { ethanol } \end{gathered}$	67	$\begin{gathered} \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \\ (319.46) \end{gathered}$	$\begin{aligned} & 78.95 \\ & 78.56 \end{aligned}$	$\begin{aligned} & 7.89 \\ & 7.73 \end{aligned}$	$\begin{aligned} & 13.15 \\ & 13.01 \end{aligned}$	-	$\begin{aligned} & 3211(\mathrm{NH}), 1609 \\ & (\mathrm{C}=\mathrm{N}) \end{aligned}$	$\begin{aligned} & 9.9 \text { (br, } 1 \mathrm{H}, \mathrm{NH}), 7.5-7.0(\mathrm{~m}, 10 \mathrm{H}, \\ & \text { arom.), } 3.4\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.9-1.2(\mathrm{~m}, \\ & \left.12 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
11a	$\begin{gathered} 249 \\ \text { DMF } \end{gathered}$	61	$\underset{(477.56)}{\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}}$	$\begin{aligned} & 65.39 \\ & 65.03 \end{aligned}$	$\begin{aligned} & 5.91 \\ & 5.78 \end{aligned}$	$\begin{aligned} & 8.79 \\ & 8.60 \end{aligned}$	$\begin{aligned} & 6.71 \\ & 6.59 \end{aligned}$	$\begin{aligned} & 3286(\mathrm{NH}), 1649 \\ & (\mathrm{C}-\mathrm{O}), 661(\mathrm{P}=\mathrm{S}) \end{aligned}$	$\begin{aligned} & 9.9(\mathrm{br}, \mathrm{H}, \mathrm{NH}) ; 7.5-6.9(\mathrm{~m}, 14 \mathrm{H} \text {, arom.); } \\ & 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.5\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \text {; } \\ & 1.9-1.2\left(\mathrm{~m}, 8 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
11b	$\begin{gathered} 221 \\ \text { ethanol } \end{gathered}$	59	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS} \\ (491.59) \end{gathered}$	$\begin{aligned} & 65.97 \\ & 65.60 \end{aligned}$	$\begin{aligned} & 6.15 \\ & 6.00 \end{aligned}$	$\begin{aligned} & 8.54 \\ & 8.41 \end{aligned}$	$\begin{aligned} & 6.52 \\ & 6.38 \end{aligned}$	$\begin{aligned} & 3213(\mathrm{NH}), 1646 \\ & (\mathrm{C}=\mathrm{O}), 669(\mathrm{P}=\mathrm{S}) \end{aligned}$	$\begin{aligned} & 10.9(\mathrm{br}, \mathrm{H}, \mathrm{NH}) ; 7.5-6.9(\mathrm{~m}, 14 \mathrm{H}, \\ & \text { arom.); } 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.5(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right) ; 1.9-1.2\left(\mathrm{~m}, 10 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
11c	$\begin{gathered} 272 \\ \text { ethanol } \end{gathered}$	68	$\underset{(505.61)}{\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}}$	$\begin{aligned} & 66.51 \\ & 66.15 \end{aligned}$	$\begin{aligned} & 6.38 \\ & 6.21 \end{aligned}$	$\begin{aligned} & 8.33 \\ & 8.16 \end{aligned}$	$\begin{aligned} & 6.34 \\ & 6.17 \end{aligned}$	$\begin{aligned} & 3287(\mathrm{NH}), 1652 \\ & (\mathrm{C}=\mathrm{O}), 653(\mathrm{P}=\mathrm{S}) \end{aligned}$	$\begin{aligned} & 10.3(\mathrm{br}, \mathrm{H}, \mathrm{NH}) ; 7.5-6.9(\mathrm{~m}, 14 \mathrm{H}, \\ & \text { arom. }) ; 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.5(\mathrm{~s}, 2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right) ; 1.9-1.1\left(\mathrm{~m}, 12 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
12a	$\begin{gathered} 231 \\ \text { ethanol } \end{gathered}$	65	$\begin{gathered} \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{OPS}_{2} \\ (493.62) \end{gathered}$	$\begin{aligned} & 63.26 \\ & 62.85 \end{aligned}$	$\begin{aligned} & 5.71 \\ & 5.56 \end{aligned}$	$\begin{aligned} & 8.51 \\ & 8.37 \end{aligned}$	$\begin{aligned} & 12.99 \\ & 12.70 \end{aligned}$	1410 (SH), $658(\mathrm{P}=\mathrm{S})$	$\begin{aligned} & 7.3-6.9(\mathrm{~m}, 14 \mathrm{H} \text {, arom. }), 4.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}) ; \\ & 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; 3.5\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) \\ & 1.9-1.2\left(\mathrm{~m}, 8 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
12b	227 dioxan	79	$\begin{gathered} \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{OPS}_{2} \\ (507.65) \end{gathered}$	$\begin{aligned} & 63.88 \\ & 63.47 \end{aligned}$	$\begin{aligned} & 5.95 \\ & 5.81 \end{aligned}$	$\begin{aligned} & 8.27 \mathrm{~s} \\ & 8.09 \end{aligned}$	$\begin{aligned} & 12.63 \\ & 12.40 \end{aligned}$	$1429(\mathrm{SH}), 670$ ($\mathrm{P}=\mathrm{S}$)	$\begin{aligned} & 7.5-7.0(\mathrm{~m}, 14 \mathrm{H}, \text { arom. }), 4.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), \\ & 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.6\left(\mathrm{~S}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \\ & 1.9-1.2\left(\mathrm{~m}, 10 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$
12c	$\begin{gathered} 242 \\ \text { ethanol } \end{gathered}$	67	$\begin{gathered} \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{OPS}_{2} \\ (521.67) \end{gathered}$	$\begin{aligned} & 64.46 \\ & 64.12 \end{aligned}$	$\begin{aligned} & 6.18 \\ & 6.03 \end{aligned}$	$\begin{aligned} & 8.05 \\ & 7.90 \end{aligned}$	$\begin{aligned} & 12.29 \\ & 12.09 \end{aligned}$	1420 (SH), $673(\mathrm{P}=\mathrm{S})$	$\begin{aligned} & 7.5-7.0(\mathrm{~m}, 14 \mathrm{H}, \text { arom. }), 4.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SH}), \\ & 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.5\left(\mathrm{~S}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \\ & 1.9-1.1\left(\mathrm{~m}, 12 \mathrm{H}, \text { cyclic } \mathrm{CH}_{2}\right) \end{aligned}$

[^1](cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole]-2^{\prime}-disulfi-des ($\mathbf{5 a - c}$). As to the mechanism for the formation Pheterocycles 5a-c, it is suggested that a nucleophilic attack on LR to give the intermediate, which at elevated temperature looses $\mathrm{H}_{2} \mathrm{~S}$ to give, compounds 5a-c (cf. Scheme 2). The structures of these products were based on spectroscopic data and elemental analysis ($c f$. Table I).

Compounds 6b,c were synthesized by Desai, ${ }^{15}$ and this synthesis can be carried out in another route via the diazotization of compounds $\mathbf{4 b}, \mathbf{c}$. Also, the diazotization of compound $\mathbf{4 a}$ gave 1anilinocyclopentanemethanol (6a). Compounds 6a-c were then submitted to the reaction with LR in anhydrous benzene to give 2^{\prime}-(4-methoxyphenyl)-3'-phenylspiro[cyclopentane (cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]oxaazaphosphole]-2'-disulfides (7ac) (cf. Scheme 2). The structures of the new products have been elucidated via analytical results and spectroscopic data ($c f$. Table I).

Moreover, the addition of compounds 4a-c to phenyl isocyanate and/or phenyl isothiocyanate in ethanol at $26^{\circ} \mathrm{C}$ afforded the opened products $\mathbf{8 a - c}$ and $9 \mathbf{9 - c}$, respectively, via an addition of the amino groups of compounds $\mathbf{4 a - c}$ to the isocyanate or isothiocyanate (cf. Scheme 2). The cyclized products 10a-c were obtained by refluxing compounds 8a-c and/or 9a-c in N,N-dimethylaniline. The IR and ${ }^{1} \mathrm{H}$ NMR spectra of these compounds confirm the proposed structures (cf. Table I).

The reaction of compounds 8a-c and/or 9a-c with LR in refluxing p-xyl-ene afforded $2^{\prime}(4-$ methoxyphenyl)-3'-phenylspiro[cyclopentane (cyclohexane and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole]1 -ylphenylaminomethane-1-ones (11a-c) and $2^{\prime}(4$-methoxyphenyl)-3^{\prime}-phenylspiro[cyclopentane (cyclohexane and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole]-1-ylphenylaminometha-ne-1-thiones (12a-c), respectively. The same products 11a-c and 12a-c were also obtained through the reaction of compounds 5a-c with phenyl isocyanate and/or phenyl isothiocyanate in boiling benzene. The structure of compounds 11a-c and 12a-c were confirmed on the basis of their elemental and spectral analyses (cf. Table I).

EXPERIMENTAL

The Synthesis of 2'-(4-Methoxyphenyl)-4'-phenylspiro [cyclopentane (Cyclohexane and Cycloheptane)-1,4'-Perhydro[1,3,2]diazaphosphole]-2',5'-disulfides (3a-c): General Procedure

2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (LR, 1) ($2.02 \mathrm{~g} ; 0.005 \mathrm{~mole}$) and 1-phenylamino-1-cyanocyclopentane

SCHEME 2

(cyclohexane, and/or cycloheptane) (2a-c) (0.01 mol) were dissolved in acetonitrile (80 mL). The reaction mixture was refluxed for 6 h , concentrated and cooled the precipitate was filtered off, dried, and recrystallized from the suitable solvent to give compounds 3a-c.

The Synthesis of 1-Anilinocyclopentane(cyclohexane, and Cycoheptane)methyl-amine 14a-c: General Procedure

To a solution of the proper nitrile $\mathbf{2 a - c}(1.0 \mathrm{~g}$) in absolute ethanol (10 mL) was added 1.5 g of clean sodium. When all the sodium reacted ($10-15 \mathrm{~min}$.), the reaction mixture was cooled to about $20^{\circ} \mathrm{C}$, and 15 mL of conc HCl was added. The reaction mixture was concentrated and cooled and 20 mL of $40 \% \mathrm{NaOH}$ was added dropwise with shaking to the reaction mixture. The formed amine was extracted with chloroform and purified by distillation.

The Synthesis of 1-Anilinocyclopentane (Cyclohexane and Cycloheptane)methanol 6a-c: General Procedure

To a stirred ice-cooled solution of the proper amine (4a-c) (0.01 mole) in 8 mL of conc HCl was added portionwise ($0.83 \mathrm{~g}, 0.012$ mole) of NaNO_{2}. The mixture was kept at r.t. for 30 min and then poured onto crushed ice. The obtained solution was neutralized with $\mathrm{NH}_{4} \mathrm{OH}$, and the separated oil was extracted with chloroform and purified by distillation to give compounds 6a-c.

> The Synthesis of 2'-(4-Methoxyphenyl)-3'-phenylspiro [cyclopentane(cyclohexane and cycloheptane)-1,4'-Perhydro-[1,3,2]diazaphosphole]-2'-disulfides (5a-c) and 2'-(4-methoxyphenyl)-3'-phe-nylspiro[cyclopentane(cyclohexane and Cycloheptane)-1,4'-perhydro[1,3,2]oxaazaphosphole]-2'disulfides (7a-c): General Procedure

A mixture of the proper amine (4a-c) (0.01 mole) and/or the proper hydroxylderivative (6a-c) (0.01 mole) and 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (LR, 1) ($2.02 \mathrm{~g}, 0.005$ mole) in dry benzene (80 mL) was refluxed for 5 h , concentrated, and cooled. The formed precipitate was filtered off, dried, and recrystallized from the suitable solvent to give compounds $\mathbf{5 a}-\mathbf{c}$ and $7 \mathbf{7 a}-\mathbf{c}$, respectively.

The Synthesis of Compounds 8a-c and 9a-c: General Procedure

To a stirred solution of the proper amine 4a-c (0.01 mole) in 30 mL of absolute ethanol was added phenyl isocyanate ($1.19 \mathrm{~g}, 0.01 \mathrm{~mole}$)
or phenyl isothiocyanate ($1.35 \mathrm{~g}, 0.01$ mole). The reaction mixture was
stirred at r.t. for 1 hour. The formed precipitate was filtered off, dried, and recrystallized from the suitable solvent to give compounds 8a-c and $9 \mathbf{9 - c}$, respectively.

The Synthesis of $\mathbf{3}^{\prime}$-Phenyl-2'-phenylaminospiro [cyclopentane(cyclohexane and Cycloheptane)-1,4'-(3', $\mathbf{5}^{\prime}$ dihydroimidazoles)] (10a-c): General Procedure

Compound 8a-c and/or 9a-c (0.01 mol) was refluxed in N, N dimethylaniline (10 mL) for 12 h . The solvent was concentrated, cooled, and filtered off. The solid product was recrystallized from the suitable solvent ($c f$. Table I).

The Synthesis of 2'-(4-Methoxyphenyl)-3'phenylspiro[cyclopentane(cyclohexane and Cycloheptane)-1,4'-Perhydro[1,3,2]diazaphosphole]-1-ylphenylamino-methane-1-ones (11a-c) or -1-thiones (12a-c): General Procedure

2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (LR, 1) ($2.02 \mathrm{~g} ; 0.005$ mole) and the proper compound 8a-c and/or 9a-c (0.01 mol) were dissolved in p-xylene (60 mL). The reaction mixture was refluxed for 6 h , concentrated, and cooled; the precipitate was filtered off, dried, and recrystallized from the proper solvent to give compounds 11a-c and 12a-c, respectively.

The Alternate Synthesis of Compounds 11a-c and 12a-c: General Procedure

Compound 5a-c (0.01 mol), phenyl isocyanate and/or pheny isothiocyanate (0.01 mol) and dry benzene (70 mL) were refluxed together for 3 h when colorless crystals separated out, which were filtered and washed with warm benzene to afford compounds 11a-c and 12a-c.

REFERENCES

[1] J. C. Thomas, J. Org. Chem., 67, 6461 (2002).
[2] M. Ori and T. Nishio, Heterocycles, 52, 111 (2000).
[3] T. Nishio and H. Sekiguchi, Tetrahedron, 55, 5017 (1999).
[4] T. Nishio, J. Org. Chem., 62, 1106 (1997).
[5] A. M. Polozov, S. E. Cremer, P. E. Fanwick, and E. Phillip, Can. J. Chem., 77, 1274 (1999).
[6] B. Mohamed, E. M. Lotfi, and Z. Hedi, Phosphorus, Sulfur, and Silicon, 157, 145 (2000).
[7] L. S. Boulous and H. A. Abd El-Malek, Heteroatom Chem., 10, 488 (1999).
[8] A. A. El-Barbary and S.-O. Lawesson, Tetrahedron, 37, 2641 (1981).
[9] C. S. Sarma and J. C. S. Kataky, Indian J. Chem., 38B, 464 (1999).
[10] H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 148, 131 (1999).
[11] H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 164, 11 (2000).
[12] A. B. A. G. Ghattas, O. A. Abd Allah, and H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 157, 1 (2000).
[13] H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 178, 1397 (2003).
[14] M. S. Chande and S. K. Balel, Indian Journal of Chemistry, 35B, 377 (1996).
[15] P. R. Desai, R. D. Desai, G. S. Saharia, and B. R. Sharma, J. Indian Chem. Soc., 40, 525 (1963).
[16] B. S. Pedersen and S.-O. Lawesson, Tetrahedron, 35, 2433 (1979).

[^0]: Received February 26, 2006; accepted April 16, 2006.
 Address correspondence to H. M. Moustafa, Chemistry Department, Faculty of Science, Sohag, Egypt. E-mail: hassa20002000@yahoo.com

[^1]: ${ }^{a}$ Uncorrected
 ${ }^{b}$ Satisfactory microanalysis obtained C, $-0.47 ; \mathrm{H},-0.25 ; \mathrm{N},-0.39 ; \mathrm{S},-0.35$. ${ }^{c}$ Measured by Nicolet FT-IR 710 spectrophotometer.
 ${ }^{d}$ Measured by ${ }^{1}$ HNMR LA 400 MHz (Jeol) Assiut University.

